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Abstract
The strength of protein domains is crucial to identify the mechanical role of protein domains in
biological processes such as mechanotransduction, tissue mechanics and tissue remodeling.
Whereas the concept of strength has been widely investigated for engineered materials, the
strength of fundamental protein material building blocks and how it depends on structural
parameters such as the chemical bonding, the protein filament length and the timescale of
observation or deformation velocity remains poorly understood. Here we report a systematic
analysis of the influence of key parameters that define the energy landscape of the strength
properties of alpha-helical protein domains, including energy barriers, unfolding and refolding
distances, the locations of folded and unfolded states, as well as variations of the length and
pulling velocity of alpha-helical protein filaments. The analysis is facilitated by the
development of a double-well mesoscale potential formulation, utilized here to carry out a
systematic numerical analysis of the behavior of alpha-helices. We compare the results against
widely used protein strength models based on the Bell model, one of the simplest models used
to characterize the strength of protein filaments. We find that, whereas Bell-type models are a
reasonable approximation to describe the rupture of alpha-helical protein domains for a certain
range of pulling speeds and values of energy barriers, the model ceases to hold for very large
energy barriers and for very small pulling speeds, in agreement with earlier findings. We
conclude with an application of our mesoscale model to investigate the effect of the length of
alpha-helices on their mechanical strength. We find a weakening effect as the length of
alpha-helical proteins increases, followed by an asymptotic regime in which the strength
remains constant. We compare strand lengths found in biological proteins with the scaling law
of strength versus alpha-helix filament length. The mesoscale model reported here is generally
applicable to other protein filaments that feature a serial array of domains that unfold under
applied strain, where a similar length-dependent strength could be observed.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The strength of protein filaments is crucial to identify the
mechanical role of protein constituents in key biological
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processes such as mechanotransduction, tissue mechanics and
tissue remodeling [1–7]. In addition to medical and biological
applications, a better understanding of alpha-helices and alpha-
helix-based protein networks and their resulting mechanical
properties could possibly lead to the design and synthesis
of de novo synthetic alpha-helix-based peptide and protein
materials [8–10]. Specifically, alpha-helices are found in
many structural fibrous protein materials such as hair, hoof
and intermediate filaments, and there they play an important
biomechanical role. Thus, a thorough understanding of the
mechanical properties is critical to improve biomechanical
models of key biological materials and processes, and in
particular an understanding of how the geometry of alpha-
helices is linked to their mechanical properties. Whereas the
concept of strength has been widely investigated for engineered
materials, the strength of protein materials, and how it
depends on the structure and properties of basic biological
protein building blocks (e.g. the chemical bonding, protein
filament length, etc) is not understood as well. Specifically,
open questions remain with respect to the strength properties
depending on the geometry (e.g. length) of protein filaments
and the effects of the strength of key chemical bonds (such as
H-bonds) that can vary as a function of the solvent environment
of the protein.

This paper is focused on a multi-scale simulation analysis
of strength properties of alpha-helical (also abbreviated as
AH) protein domains. The geometry of an alpha-helical
protein is shown in figure 1(a), showing its characteristic
coiled structure. As stated above, the alpha-helix represents
a fundamental building block of a broad class of protein
materials (including hoof, hair, wool and cells), where it
typically forms assemblies with other alpha-helices (such as
coiled-coils) or other secondary structures (such as beta-sheets,
random coils, etc). Here we focus on the analysis of single
alpha-helix proteins, selected here as a model system, to
elucidate the influence of key parameters that characterize the
energy landscape of the unfolding process of alpha-helical
protein filaments, including energy barriers, unfolding and
refolding distances, the locations of folded and unfolded
states, as well as the geometry (here: length) of the protein
filament. The analysis is facilitated by the development of a
simple double-well mesoscale potential formulation to model
the behavior of alpha-helices, which is used to carry out a
systematic parameter study based on molecular dynamics.

The plan of this paper is as follows. We first validate the
double-well potential mesoscale model for single alpha-helical
protein molecules against pulling experiments of a single
alpha-helix that were carried out earlier with full atomistic
simulations. After establishing this reference system, we
measure the influence of energy landscape parameters on the
rate (i.e. pulling velocity) dependence of the rupture force and
compare it with the predictions of the Bell model for a range of
pulling velocities. We identify the sensitivity of all parameters
in our mesoscale model, and show the limitations of the
applicability of the Bell model to describe the rupture strength.
Finally, we apply our double-well potential mesoscale model
to study the length effect of the strength of an individual
alpha-helical protein, providing a structure–property link of the
strength properties of alpha-helical proteins.

Figure 1. Mesoscale model set-up, geometry and parameters.
Subplot (a) schematic of the coarse-graining procedure, in which we
replace the full atomistic representation by a mesoscopic bead model.
A pair of beads represents one turn in the alpha-helix (also called a
convolution), and thus 3.6 residues (each bead also has the
corresponding mass). In the atomistic representation, the folded
states of the turns are stabilized by the presence of 3.6 H-bonds
between turns. In the mesoscopic bead model, this is represented by
using a double-well potential to describe the energy landscape under
bond stretching. Subplot (b) double-well profile of the bond
stretching potential in the bead model, representing the energy
landscape associated with unfolding of one convolution. The
numerical values of the equilibrium states (x0 and x1), energy
barriers (Eb and Er) and the transition state xtr are obtained from
geometric analysis of the alpha-helix geometry, as well as full
atomistic simulations. The transition state (local energy peak of the
potential) corresponds to the breaking of the 3.6 H-bonds between
two convolutions of the alpha-helix. After failure of these weak
bonds, the convolution unfolds to a second equilibrium state with a
larger interbead distance. Under further loading, its covalent bonds
begin to be stretched which leads to a second increase of the potential
at large deformation. Subplot (c) evolution of the energy landscape
of a bond subjected to a force according to Bell’s theory. The rupture
of the bond occurs via thermally assisted crossing of an activation
barrier Eb which is reduced by f xb as the applied force f increases.

2. Theoretical and computational methods

This section contains a detailed discussion of the classical Bell
model [11] and related methods used to describe the strength
of protein domains, as well as details of the implementation of

2



J. Phys.: Condens. Matter 22 (2010) 035102 J Bertaud et al

our numerical mesoscale simulation approach. Several recent
papers have introduced advanced models for the strength of
proteins, including works by Szabo, Dudko, Hummer and co-
workers [12–15], Klafter and co-workers [16] and Lin et al
[17], as well as Friddle [18]. In our study, however, we focus
solely on the simple Bell model [11] and related approaches.
The Bell model, despite its limitations, is one of the most
well-known, simplest and most widely used strength models
of proteins and, as such, serves as a suitable starting point
for the development of a coarse-grained model and subsequent
comparison with a strength model. Studies that include
a comparison with more advanced models is left to future
work [12–18], where a similar systematic approach as used
here could be pursued.

2.1. Theoretical strength models

The ‘classical’ Bell model is a simple phenomenological model
that describes the frequency of failure of reversible bonds [11].
The concept of reversibility thereby means that an individual
bond can break under no force if one waits a sufficiently long
time, and that it can reform spontaneously. Such bonds may be
associated with electrostatic, van der Waals (vdW) or H-bond
interactions (as it applies to alpha-helices). The frequency of
failure, also called dissociation rate or off rate, is defined as the
inverse of the bond lifetime and is used as a concept to describe
the dynamical behavior of such bonds.

Bell’s model explains the force dependence of the off
rate and thus shows the significant role of mechanical force
in biological chemistry. For instance, this model can be
applied to describe the forced unbinding of biological adhesive
contacts such as adhesion of cells to cells [11]. Bell’s model
is an extension of the transition state theory for reactions in
gases developed by Eyring and others [19]. Inspired also
by Zhurkov’s work on the kinetic theory of the strength of
solids [20], Bell predicted for the first time that the off rate
of a reversible bond, which is the inverse of the bond lifetime,
increases when subjected to an external force f . Indeed, the
rupture of bonds occurs via thermally assisted crossing of an
activation barrier Eb which is reduced by f xb as the applied
force f increases, xb being the distance between the bound
state and the transition state (see figure 1(c)). Thus, the Bell
off rate expression [21] is given by

k = ω0 exp

(
− Eb − f xb

kBT

)
, (1)

where ω0 is the natural vibration frequency of the bond and
kBT is the thermal energy (see figure 1(c) for an overview of
the energy landscape as considered in Bell’s model; it contains
only the energy barrier associated with unfolding).

The rupture force can be predicted based on different
formulations. In this paper, we will utilize three different
models and compare them with our mesoscale simulation
results. Two of these methods are directly derived from
the concept put forth in Bell’s basic model (discussed in
section 2.1). The rupture force

fcrit = Eb/xb, (2)

corresponds to the force to completely diminish the energy
barrier, defined as the critical force (see also the schematic
in figure 1(c)), leading to instantaneous rupture of the bond.
For forces smaller than fcrit ( f < fcrit), there still exists a
finite probability that the bond breaks. The dynamics of bond
rupture for these cases can be estimated based on Bell’s model.
The following expression is derived from Kramers’ theory by
Evans and Ritchie, to express the rupture force at a constant
loading rate r = Kv [22], where

f (v, Eb, xb) = kBT

xb
ln(v) − kBT

xb
ln

(
kBT w0

K xb

)

+ Eb

xb
= a ln(v) + b. (3)

In equation (3), K is the stiffness of the force transducer
and v = �x/�t is the constant pulling speed at which the
protein structure is deformed. This relation predicts that the
strength depends logarithmically on the pulling velocity. In
the following, we refer to this equation as the ‘Evans model’.
Another model is given by

f (v, Eb, xb) = kBT

xb
ln(v) − kBT

xb
ln(xbω0)

+ Eb

xb
= a ln(v) + b. (4)

This expression is a direct rearrangement of the Bell off-rate
expression (equation (1)). The assumption made to include the
velocity in the expression given by equation (1) is to equal the
pulling velocity to the distance to break one bond divided by
the lifetime of the bond, that is, set v = �x/�t = kxb. For
further details regarding this model and its derivation we refer
the reader to [23]. In the following sections, we refer to the
model presented in equation (4) as the ‘Bell model’.

Both expressions (equations (3) and (4)) predict a
logarithmic dependence of the rupture force with respect to the
pulling speed, where the parameter a denotes the slope in the
f − ln(v) domain and the parameter b the intercept. Thus
the bond energy landscape characteristics xb and Eb can be
determined by fitting one of these equations with the f − ln(v)

plot obtained from experiments or simulations. By fitting the
slope a, one can obtain the xb value. Then, by considering that
ω0 = 1013 s−1 [11], one can fit the intercept b and obtain the
Eb value.

2.2. Computational methods

Here we describe the details of our atomistic-based multi-scale
simulation approach used to develop a mesoscale description
of alpha-helical protein domains. The coarse-grained model
for alpha-helical protein domains is fitted to results from
full atomistic simulations in explicit water that have been
reported earlier by some of the authors of this paper [23]. All
simulations and calculations are performed at a temperature of
T = 300 K.

2.2.1. Coarse-graining approach for alpha-helical protein
filaments. Multi-scale simulation models for protein
structures have become increasingly popular in recent years,
and have enabled us to seek a direct link between experiment
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and theoretical bottom-up descriptions of materials. Single-
bead models are the most direct approach taken for studying
macromolecules. The term ‘single bead’ derives from
the idea of using single beads, that is, point masses, for
describing each amino acid in a protein structure. The
elastic network model (ENM) [24], Gaussian network model
(GNM) [25] and Go models [26–28] are well-known examples
that are based on such bead model approximations. These
models have been extremely successful in explaining thermal
fluctuations of proteins [29] and have also been implemented to
model the unfolding problem to elucidate atomic-level details
of deformation and rupture that complement experimental
results [30–33]. A more recent direction is coupling of ENM
models with a finite element-type framework for mechanistic
studies of protein structures and assemblies [34]. Even coarser-
level multi-scale modeling methods have been reported more
recently, applied to model biomolecular systems at larger
time and length scales. These models typically employ
superatom descriptions that treat clusters of amino acids as
‘beads’. In such models, the elasticity of the polypeptide chain
is captured by simple harmonic or anharmonic (nonlinear)
bond and angle terms. These methods are computationally
quite efficient and capture shape-dependent mechanical
phenomena in large biomolecular structures [35], and can also
be applied to collagen fibrils in connective tissue [36] as well
as mineralized composites such as nascent bone [37]. In this
paper, we apply such a coarse-level description of alpha-helical
protein domains.

To achieve the coarse-grained description of alpha-helical
protein filaments with a precise control over the associated
unfolding energy landscape we propose an alternative
mesoscale description. In this model, the entire sequence
of amino acids that makes up the alpha-helical structure is
replaced by a collection of beads, as shown in figure 1(a).
The structure of an alpha-helix consists of a series of turns
(also referred to as convolutions), whereby each turn features
3.6 amino acid residues. This protein secondary structure is
stabilized through the presence of H-bonds between the O atom
of residue n and the N atom of residue n + 4, and hence there
are 3.6 H-bonds between turns, on average.

In our coarse-grained model, we aim at capturing the main
structural and energetic features of an alpha-helical protein
domain, as it switches between the folded and unfolded state,
by explicitly considering the discrete makeup of the alpha-
helical protein. Therefore one bead represents one turn of
the alpha-helix and has the same mass. Moreover, the beads
interact according to a bond potential and an angle potential.
We choose a double-well bond potential in order to capture
the existence of two equilibrium states for a convolution,
corresponding to the folded and unfolded configuration (see
figure 1(b) for the energy landscape and snapshots of atomistic
geometries of the folded and unfolded states). The model does
not involve explicit solvent nor a friction coefficient; rather,
the effect of solvent on the breaking dynamics of alpha-helical
convolutions is captured in the effective double-well potential.
Through this formulation, the bond potential can describe the
microscopic details of the rupture mechanism of the 3.6 H-
bonds between each convolution under force, and the transition

from the folded states to the unfolded states of convolutions
through an energy barrier that separates the two states. Yet,
the description is sufficiently ‘coarse’ so that it enables a
significant computational speed-up and efficiency compared
with the full atomistic description, suitable for the systematic
analysis carried out here that requires a very large number of
simulations.

The mathematical expression for the total energy of the
system is given by

E = ET + EB, (5)

where ET is the total tensile energy and EB is the total bending
energy.

The total bending energy is given by the sum over all
triples of beads:

EB =
∑

triplets

φB(x). (6)

The angle potential is given by

φB(θ) = 1
2 KB(θ − θ0)

2, (7)

where KB relates to the bending stiffness of the molecule E I ,
θ as the interbead angle (in triplets of atoms) and θ0 as the
equilibrium angle. The bending stiffness parameter KB is given
by

KB = 3E I

x0
, (8)

with x0 denoting the equilibrium bead distance which
corresponds to the equilibrium distance of one folded
convolution and E I as the bending stiffness of the alpha-
helix. In order to distinguish the bending stiffnesses of a folded
alpha-helix and an unfolded alpha-helix (which entails a severe
structural change of the protein), we use a stiffness parameter
KB that depends on the distance between neighboring beads x
as

KB = KB,fold

[
(1 − α)

1

π

(
− arctan(100(x − xtr)) + π

2

)
+ α

]

(9)
with

α = KB,unfold

KB,fold
(10)

defined as the ratio between the bending stiffness parameters
of the unfolded state KB,unfold and folded state KB,fold. The two
bending stiffness parameters are given by

KB,fold(unfold) = 3E Ifold(unfold)

x0(1)

(11)

with x0(1) denoting the equilibrium bead distance which
corresponds to the equilibrium distance of one folded
(unfolded) convolution and E Ifold(unfold) is the bending stiffness
of a folded (unfolded) alpha-helix. This formulation based on a
reaction coordinate (here the parameter x) is similar in spirit to
reactive force field formulations based on chemical bond orders
(such as Tersoff, ReaxFF and others, as reviewed, for example,
in [38]).

The total tensile energy is given by the sum over all
pairwise interactions:

ET =
∑
pairs

φT(x). (12)
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The double-well bond potential φT(x) is given by (see
also figure 1(b) for a schematic and an illustration of all
parameters):

φT(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eb

x4
b

(x − xtr)
2(x − xtr − √

2xb)

× (x − xtr + √
2xb) + Eb, x < xtr

Er

x4
r

(x − xtr)
2(x − xtr − √

2xr)

× (x − xtr + √
2xr) + Eb, xtr � x .

(13)
The first equilibrium with reaction coordinate x0 (first potential
minimum) corresponds to the folded state of one turn of an
alpha-helix under no force. The transition state (energy barrier
Eb), with position xtr (peak of the potential between two wells),
corresponds to the breaking of the 3.6 H-bonds between two
turns of the alpha-helix. After failure of these weak bonds, the
turn unfolds to a second equilibrium state. This corresponds to
the second potential minimum with a larger interbead distance,
x1. Under further loading, its backbone bonds begin to be
stretched which leads to a second increase of the potential.
The parameters xb and Eb represent the distance and energy
barrier required to unfold one convolution. Similarly, xr and
Er correspond to the refolding process. It is noted that the
development of a model that enables us to tune the key energy
landscape parameters would not have been possible with other,
existing mesoscale models (e.g. united atom method and others
as discussed above).

2.2.2. Parameter identification: linking atomistic and
mesoscale for the reference model. The parameters are
determined through a fitting procedure against geometric
properties of alpha-helices as well as full atomistic MD
simulation results in an explicit solvent. We fit the energy
barrier measured from MD simulation to the energy barrier in
the mesoscale model formulation. The mass M of each bead
corresponds to the approximate average mass of one turn or
3.6 residues, leading to 400 amu. The two parameters of the
angle potential are introduced in equation (7). The value of
the equilibrium angle θ0 is 180◦, based on the geometry of
the alpha-helical structure. The bending stiffness parameter
KB,fold is linked to molecular parameters as described by
equation (8) and therefore can be determined from full
atomistic simulations of bending studies of alpha-helical
protein domains (we use the results reported in [39]). We find
KB,fold = 21.589 kcal mol−1 rad−2, which corresponds to a
persistence length of approximately 6.5 nm. For the unfolded
configuration, we use the typical persistence length of a free
polypeptide chain, which is about 0.4 nm [40]. Thus we find
KB,unfold = 0.665 kcal mol−1 rad−2.

The parameters of the tensile double potential are
introduced in equation (10) (see also the schematic shown in
figure 1(b)). We find x0 = 5.4 Å for the equilibrium bead
distance of the folded state, which corresponds to the length of
one folded convolution. The distance xb between the folded
state equilibrium and the transition state corresponds to the
distance to break 3.6 H-bonds which leads to the unfolding

of the convolution, and the parameter Eb is the corresponding
energy barrier. It is noted that earlier full atomistic MD
simulations [23] have confirmed this mechanism for stretching
alpha-helical domains, that is, H-bonds in turns indeed break
in clusters of 3–4. These two parameters are determined
from fitting against full atomistic simulations of tensile loading
experiments of alpha-helical domains of the vimentin filament
protein family (with Protein Data Bank identification code
1gk6), for a range of pulling velocities below 0.3 m s−1 [23]
(with further experimental validation [41]). We find xb =
1.2 Å and Eb = 11.1 kcal mol−1 from these full atomistic
studies by using the Bell model. The equilibrium bead
distance of the unfolded state, x1, is determined by fitting the
mesoscopic force–strain curve against the atomistic simulation
results in large deformation. In particular, this parameter
describes at what strain levels an alpha-helix convolution
is completely unfolded, and when further strain leads to
significant stiffening due to stretching of the protein backbone.
Thus we adjust x1 so that the angular point between the plateau
regime and the backbone stretching regime occurs at the same
strain as in the atomistic simulation curve. We find x1 =
10.8 Å, which corresponds to twice the length of the folded
state. Then, since we know the values of the parameters x0, xb

and x1, we can determine the distance between the unfolded
state and the transition state xr. We obtain xr = 3.5 and
xb = 4.2 Å. Finally, the energy barrier Er to refold a ‘broken’
convolution must be smaller than Eb, since the folded state
is the most favorable state for a convolution in equilibrium.
Based on a suggestion put forth in [42], we determine Er =
0.6Eb (it is noted, however, that the resulting mechanical
properties of the alpha-helix is insensitive to variations of
choices of Er, as long as Er < Eb, as discussed below in
section 3.3).

The complete set of parameters of the mesoscopic model
and their physical meaning is summarized in table 1. In the
following we refer to this set of parameters as the ‘reference
model’ (which specifically represents the alpha-helical protein
domain found in vimentin intermediate filaments from which
the mesoscopic model parameters are derived [23]).

2.2.3. Mechanical characterization. We carry out tensile
deformation of alpha-helical proteins. Loading is applied
using the steered molecular dynamics (SMD) approach with
a transducer spring constant K = 10 kcal mol−1 A−2

used for all simulations unless noted otherwise. The force
versus extension data is recorded for subsequent analysis of
mechanical properties.

3. Results and discussion

3.1. Validation of the double-well potential mesoscale model

The first step of the study is the validation of the single-
molecule mesoscale results against full atomistic simulation
results. Figure 2(a) presents the validation of the mesoscale
model by direct comparison of the strength of alpha-helical
protein domains with full atomistic results of the rupture
mechanics of an alpha-helix protein domain [23], for varying
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Table 1. Summary of all parameters of the mesoscale model. All
parameters are derived from geometric analyses and atomistic
simulations, corresponding to equations (5)–(10), as well as the
discussion presented throughout section 2.2.2. This set of parameter
values defines the ‘reference model’.

Parameters Numerical values

Equilibrium bead distance of the folded
state x0 (Å)

5.4

Distance between folded state and
transition state xb (Å)

1.2

Distance between unfolded state and
transition state xr (Å)

4.2

Energy barrier between folded state and
transition state Eb (kcal mol−1)

11.1

Energy barrier between unfolded state and
transition state Er (kcal mol−1)

6.7

Equilibrium angle θ0 (deg) 180
Bending stiffness parameter KB,fold

(kcal mol−1 rad−2)
21.6

Bending stiffness parameter KB,unfold

(kcal mol−1 rad−2)
0.665

Mass of each mesoscale bead M (amu) 400

pulling velocities (in this figure the rupture force is plotted over
the log of the pulling velocity). The straight line in this plot
corresponds to the predictions by the Bell model (equation (4)),
discussed in section 2.2.

Figure 2(b) depicts the entire force–strain curve for a
stretching experiment on the 14-bead mesoscopic model of an
alpha-helix with a length of 70.2 Å at a temperature of 300 K
and a pulling velocity of 0.1 m s−1. The curve shows the
three typical regimes observed in full atomistic simulations:
an elasticity regime at low strain, a regime in which the
convolutions of the alpha-helix unfold (referred to as the
energy dissipation regime, with 13 peaks on the curve), and
the subsequent regime of stretching of the backbone bonds.
The mean alpha-helix unfolding force, which corresponds to
the mean force of the energy dissipation regime, fits atomistic
results closely. Both full atomistic and mesoscale model
simulations predict a rupture force of approximately 350 pN.
Here and throughout this paper, we refer to ‘unfolding force’
(also referred to as strength or rupture force) as the average
unfolding force during the entire unfolding regime (mean
unfolding force, MUF), unless noted otherwise. In the studies
of the length dependence of the strength of alpha-helices, we
refer to the ‘unfolding force’ as the force at the first peak
(FFP), in order to accurately capture the size dependence of
the strength. This is because we cannot use an averaged
unfolding force in these studies as the effective length of the
alpha-helix decreases continuously and thus does not provide
an accurate measure of the actual strength dependence for a
specific length. For most studies, we prefer the MUF method
against measuring only the first peak, because it averages
among all bond rupture events and avoids strong sensitivity
to the resolution of the data. As a consequence we suggest
using an energy barrier slightly higher than the one from the
reference model (13 kcal mol−1 instead of 11.1 kcal mol−1) in
order to compensate the decrease of the measured unfolding
force due to force relaxations after the peaks, if the mesoscale
is used to fit closely to full atomistic simulation results.

Figure 2. Subplot (a) validation of the double-well potential
mesoscopic model of single molecules by comparison with full
atomistic results of alpha-helical protein domains (full atomistic
explicit water MD results taken from [23]). The plot shows the
pulling velocity dependence of the unfolding force for both the
mesoscopic and atomistic models. The mesoscale model is in very
good agreement with the full atomistic simulations, validating the
fitting of the mesoscopic bond potential. The figure further illustrates
that the mesoscale model is capable of reaching much slower pulling
velocities than those accessible to full atomistic simulation studies,
here shown for the slowest pulling speed of 0.0001 m s−1. Subplot
(b) entire force–strain curve for a stretching experiment on the
14-bead mesoscopic model of an alpha-helix (with a length of
70.2 Å at a temperature of 300 K and a pulling velocity of
0.1 m s−1). The mesoscale curve shows the three typical regimes
observed in full atomistic simulations: an elasticity regime (before
the first peak occurs), an energy dissipation regime which
corresponds to the unfolding of the 13 bonds (corresponding to the
13 peaks on the curve) and the regime of stretching of the backbone
bonds. The peaks in the mesoscale model, corresponding to the
rupture forces, agree very well with the rupture force measured from
full atomistic simulation. The dotted line approximates the increase
of rupture force with increasing strain. In agreement with atomistic
simulations reported earlier [39], the third regime sets in at
approximately 135% strain.

It is noted that the results shown in figure 2(a) illustrate
a key advantage of the coarse-grained model in reaching
much longer timescales than what could be achieved in full
atomistic simulations (the current limit in MD simulations is
approximately 0.01 m s−1, whereas we have easily reached
a more than 100-fold increase in accessible timescales by
using our mesoscale model). The model is capable of

6



J. Phys.: Condens. Matter 22 (2010) 035102 J Bertaud et al

reaching timescales of several microseconds and longer with
a quantitative accuracy comparable with full atomistic MD
simulations. Such relatively long simulations can be carried
out within several days of computational time (on a single
Intel Xeon CPU). In comparison, MD simulations of the
dynamical behavior at fractions of microseconds can take
weeks and months of computational time (even on a large
parallelized simulation set-up). This reflects a considerable
speed-up due to the coarse-graining approach, while the model
is still capable of describing the small- and large-deformation
force–strain response characteristics (e.g. softening at ≈10%
strain and stiffening at ≈135% strain) as well as strength
values quite accurately. Experimental results of stretching and
breaking single alpha-helix domains [43, 44] (with a alpha-
helix length of less than 100 Å) report forces between 140 and
240 pN during unfolding, close to the force level predictions
at slow pulling speeds shown in figure 2(a). We emphasize
that, despite the improved capacity of the coarse-grained
model to reach longer timescales, the experimental studies and
simulations are still performed at different pulling speeds and,
as such, prevent us from carrying out a direct comparison.
Achieving the direct comparison remains computationally
intractable, despite the speed-up provided by the mesoscale
model.

We now proceed with a systematic variation of the
parameters in the mesoscale model, including: Eb, xb, Er and
xr. We vary these parameters individually, while fixing all
others at their standard values as defined in the reference model
(see table 1 and section 2.2.2).

3.2. Influence of Eb and xb on the velocity dependence of the
rupture force

Figure 3 shows plots of the unfolding force versus pulling
speed obtained with the double-well potential mesoscale
model for different values of xb and Eb. The results
illustrate the influence of xb and Eb on the velocity
dependence of the rupture force as predicted by equations (3)
and (4). The range of pulling speeds is taken from 0.01 to
0.3 m s−1, which correspond to the atomistic simulation regime
where 3–4 H-bonds (that is, one whole convolution) break
simultaneously [23].

Figure 3(a) shows the plots of the unfolding force versus
pulling speed obtained for different xb values, varying from 0.5
to 2 Å. The other potential parameters remain at their standard
values as in the reference model. According to equations (3)
and (4), changes in the parameter xb lead to a change in slope
and a change in the intercept with the y axis. This behavior
is observed in figure 3(a). Figure 3(b) shows the plots of
the unfolding force versus pulling speed obtained for different
Eb values, varying from 5 to 20 kcal mol−1. As before, the
other potential parameters remain at their standard values as
in the reference model. According to equation (2), changes in
the parameter Eb lead to a change in the intersection value,
while the slope is maintained. This behavior is observed
in figure 3(b), albeit this prediction fails for relatively small
values of the energy barrier (�7 kcal mol−1). For the sake
of clarity, we do not show the plots for high energy barriers

Figure 3. Plots of the unfolding force versus pulling speed obtained
with the double-well potential mesoscale model for different values
of xb and Eb. The range of pulling speeds is taken from 0.01 to
0.3 m s−1 which corresponds to the atomistic simulation regime
where 3.6 H-bonds (one whole convolution) break
simultaneously [23]. Subplot (a) shows the plots of the unfolding
force versus pulling speed obtained for different xb values varying
from 0.5 to 2 Å, while the other potential parameters remain at their
standard values. Subplot (b) shows the plots of the unfolding force
versus pulling speed obtained for different Eb values varying from 5
to 20 kcal mol−1 (that is, between 8 kBT and 34 kBT ), while the
other potential parameters remain at their standard values. The linear
fits of these two plots show the well-known logarithmic velocity
dependence of the unfolding force. The variations of slopes and
intercepts between these linear fits show that both xb and Eb have an
influence on the logarithmic pulling velocity dependence.

(Eb values between 20 and 100 kcal mol−1), which correspond
to much larger rupture forces. We note that, because of the
scale we use for the plot in figure 3(b), it appears as if the
slopes for the Eb values of 12 and 14 kcal mol−1 are slightly
different from the others. However (as will be discussed shortly
in more detail), an in-depth study of this dependence is done
in figure 4(d), which clearly shows that the slope remains
relatively constant within the range 7–20 kcal mol−1 compared
to the lower and higher ranges. The linear fits of these two plots
show the well-known logarithmic velocity dependence of the
unfolding force. Overall, the variations of slopes and intercepts
between these linear fits show that Eb and xb have an influence
on the logarithmic velocity dependence. We will now measure
their influence carefully and quantitatively compare them with
the predictions of the Bell model.

Figure 4 depicts the plots of the slope a and the intercept b
of the logarithmic velocity dependence of the unfolding force,
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Figure 4. Plots of the slope a and the intercept b of the logarithmic pulling velocity dependence of the unfolding force versus xb and Eb,
obtained with the mesoscale model, the Bell model and the Evans model. Subplots (a) and (b) show the dependence of the intercept b and
slope a on xb, respectively. Subplots (c) and (d) show the dependence of the intercept b and slope a on Eb, respectively.

for variations of Eb and xb. The graphs show results obtained
with the mesoscale model (diamonds for the data and solid line
for the fit which is either linear, power law or logarithmic),
the Bell model (medium-dashed line) and the Evans model
(short-dashed line). For the slope plots, the Evans model
is not represented because it is identical to the Bell model.
Figure 4(a) plots the intercept b as a function of xb. The results
reveal a close agreement between simulations, Bell and Evans
models to describe the influence of xb on the intercept b (note
that, as before for this data, Eb = 11.1 kcal mol−1). In the
given range of xb, for a fixed value of Eb = 11.1 kcal mol−1,
the maximum error of the Bell model to predict the measured
xb value from the intercept b is below 20% and is found at
larger values of xb. For the Evans model the maximum error
is below 40%. Figure 4(b) plots the slope a as a function of
xb and shows a close agreement between simulations and the
Bell model (note that, for this data, Eb = 11.1 kcal mol−1).
In the given range of xb, the maximum error of the predicted
value (according to the Bell model) against the measured xb

value (from the slope) is below 25% and tends to maximize as
xb reaches rather small values (corresponding to very shallow
energy barriers). Figure 4(c) plots the intercept b as a function
of Eb (note that, as before for this data, xb = 1.2 Å fixed).
The comparison reveals a close agreement between our coarse-
grained simulations and both the Bell and Evans models.
Within the Eb value ranges corresponding to weak bonds, the
highest relative errors for the Bell and the Evans models are
below 15% and 30%, respectively. For larger Eb values, the
highest error is below 15% for both the Bell and Evans models.

Figure 4(d) plots the slope a as a function of Eb (note that
for this data xb = 1.2 Å fixed). The results show that the
Bell model fails to describe the influence of Eb on the slope

as observed in the simulations. Most importantly, the Bell
model predicts no dependence of the slope a on Eb, whereas
the simulation data clearly reveals a dependence of a on Eb.
This dependence could be fitted empirically by the following
logarithmic relation:

a = (35.48 ln(Eb/(kcal mol−1)) − 48.31) pN. (14)

The disagreement between the Bell model prediction and the
measurement from simulation is largest for very small values
of Eb and for very large values of Eb. Within the range of
energy barriers between 9 and 18 kcal mol−1 (that is, for a
range of 15–30 kBT ), which corresponds to the range of weak
bonds (e.g. H-bonds and clusters of H-bonds), the slope a
does not vary significantly since the variation is smaller than
45%. If one uses the Bell model to determine xb from the
measurement of the slope a, then, given that xb is inversely
proportional to the slope a, the error of xb is equal to the
error on the slope a, which leads to an error on xb smaller
than 45% as well (thus comparable to the error observed in
the previous plots). This result suggests that, in the range of
weak bond energies, the Bell model is a suitable model to
describe the energy landscape. We note that many applications
of the Bell model in the literature are indeed within the range
of weak bond energies [42, 45, 46]. For Eb values lower than
9 kcal mol−1, we find a strong decrease of the slope when Eb

decreases. A possible reason is that the critical velocity below
which the Bell model predicts a negative force value enters the
studied range of velocities for values below Eb = 7 kcal mol−1

(Eb = 5 kcal mol−1 for the Evans model). Thus, in this
range of velocities and for low Eb values, we would expect a
deviation from the Bell model prediction (for instance, through
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Figure 5. Plots of the slope a and the intercept b of the logarithmic pulling velocity dependence of the unfolding force versus xr and Er

(properties associated with the second local unfolded equilibrium), obtained with the mesoscale model (diamonds for the data and solid line
for the fit which is either linear, power law or logarithmic). Subplots (a) and (b) show the dependence of the slope a and intercept b on xr,
respectively. Subplots (c) and (d) show the dependence of the slope a and intercept b on Er, respectively. The plots show that the parameters of
the second potential well do not significantly influence the pulling velocity dependence of the unfolding force except for xr values below xb.

a smooth transition between the Bell linear fit to a very low
rupture force in an asymptotic regime [41]).

In light of Evans’ earlier derivation, this analysis may
also suggest that the assumption made in Kramers’ theory that
the energy barrier is much greater than the thermal energy
breaks down for Eb below 9 kcal mol−1 in this studied range
of velocities. The disagreement at very large values of Eb

could be explained by the fact that, for values larger than
20 kcal mol−1, the Bell model for ‘weak bonds’ is no longer
applicable and other protein strength models suitable for strong
bonds must be used.

3.3. Influence of Er and xr on the velocity dependence of the
rupture force

Figure 5 shows the plots of the slope a and the intercept b
for variations of potential parameters that relate to the second
local unfolded equilibrium (see figure 1(b) for a schematic
and corresponding atomistic geometry as well as a description
of parameters used to characterize this part of the energy
landscape). These are parameters xr and Er (corresponding to
the distance and energy barrier for refolding of a convolution).
It is noted that these two parameters are not included in
Bell’s or Evans’ models, respectively. The parameter xr varies
between 0.1xb and 4xb. The parameter Er varies within a range
between 0 and Eb, so that the first equilibrium remains the most
probable state (that is, a global minimum).

Figure 5(a) plots the influence of variations of xr on the
slope a and shows that xr does not have a significant influence
on the slope. This is evident from the fact that the linear
fit to the simulation data is almost horizontal. Figure 5(b)
plots the influence of variations of xr on the intercept b. The
results suggest that xr does not have a significant influence on

the intercept, except for values lower than xb. For instance,
the intercept is approximately 100% higher for xr = 0.1xb

than for xr = 2xb (the plot shows a fit of a power law to
the data). The results suggest that the Bell model may not
be relevant to describe an energy landscape where the width
of the second potential equilibrium is shorter than the width
of the first potential equilibrium. Figures 5(c) and (d) show
that Er does not have any significant influence on either the
slope a or the intercept b. In conclusion, the parameters of
the second unfolded equilibrium do not affect the logarithmic
velocity dependence of the unfolding force, provided that xr is
higher than xb. Conversely, if xr is significantly lower than xb,
the Bell model is not relevant.

3.4. Influence of Er and xr on the rupture force

We proceed with an analysis of the influence of xr and Er on the
rupture force at a given pulling speed of 0.1 m s−1 (as before,
since these parameters are not included in the Bell model there
is no influence of these parameters predicted from the Bell
model). We focus on two aspects, first the value of the rupture
force at the first peak in the force–strain plot (see figure 2),
and second on the average unfolding force during the entire
unfolding regime (as the strain increases until stiffening occurs
due to stretching of the protein backbone). Figures 6(a) and (b)
show the influence of xr and Er on the first peak in the force–
strain plot. The data clearly shows that these parameters do not
influence the first force peak. Figure 7 depicts the influences of
xr and Er on the average unfolding force. Figure 7(a) shows
that Er does not significantly influence the unfolding force.
In contrast, figure 7(b) shows that xr influences the unfolding
force for xr values below xb.
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Figure 6. Influence of xr and Er on the first rupture peak. Subplot (a) and (b) show that the parameters of the second equilibrium do not
influence the first bond rupture event (first force peak).

Figure 7. Influence of xr and Er on the average unfolding force. Subplot (a) shows that Er does not significantly influence the unfolding force.
Subplot (b) shows that xr influences the unfolding force more strongly for xr values below xb.

3.5. Influence of Eb and xb on the rupture force

We proceed with an analysis of the influence of Eb and xb on
the rupture force at a pulling speed of 0.1 m s−1. Figures 8(a)
and (b) show the dependence of the unfolding force on Eb

and xb. As predicted by both Bell’s and Evans’ models, we
observe a linear force dependence on Eb and a relative linear
force dependence on 1/xb. The critical force expression fcrit

given by equation (2) qualitatively agrees with the scaling
behavior found in the simulations. We note that the critical
force typically yields an overestimation of the rupture force
compared with simulations and the other models, except for
very large energy barriers. This is due to the fact that this
expression does not take into account that the probability of the
bond to break for a force below the critical force is not zero.

3.6. Strength dependence on length of alpha-helical protein
filament

We report an application of the mesoscale model to a study
of the effect of the length of an individual alpha-helix protein
on its strength properties, with protein lengths ranging from
L = 10.8 to 4001.4 Å (that is, from 7 residues to 2668
residues) at a pulling velocity of 0.1 m s−1. Figure 9 shows
the strength obtained from our model for varying the length of
alpha-helices. Here the strength of alpha-helices is measured
as the force value of the first rupture peak (force at first peak,
FFP; see figure 2(b)). We observe two distinct regimes. For
short alpha-helices, the rupture strength decreases as the length

increases. For long alpha-helices, the rupture strength reaches
an asymptotic value of approximately 180 pN (indicated with
a dashed line in figure 9). The transition between these
two strength regimes occurs between 200 and 550 Å. We
note that the simulation of the system with such long lengths
would not have been possible with a full atomistic simulation
(the full atomistic simulation of a 70.2 Å protein structure
took several weeks of computational time). For short alpha-
helices, the first force peak of the two convolution system
(the smallest one considered) is approximately 600 pN and is
thus almost four times as high than the 61-turn structure (that
is, 329.4 Å, so around the transition of regimes), where the
strength approaches 150 pN. We have used the short alpha-
helix simulation results to fit an empirical equation of the form

f (L) = a ln(L/L0) + b, (15)

where we find a = −117.97 pN, b = 864.6 pN and L0 = 1 Å.
In summary, our model predicts that the strength of alpha-
helices decreases as the length increases and then reaches an
asymptotic regime for lengths larger than 200–550 Å. The
decreasing behavior can be explained based on the fact that
longer alpha-helices contain more serial bonds, each of which
can break with the same probability. Since failure of one turn is
sufficient to initiate failure of the entire system, we expect that
longer molecules are weaker, as observed in our simulations
and in [47]. This finding is also supported by the plot of the
prevalence of the length of alpha-helices that shows that short
alpha-helices are more prevalent in naturally found biological
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Figure 8. Dependence of the unfolding force on xb and Eb obtained
with the mesoscale model, the Bell model, the Evans model and the
critical force expression at a pulling speed of 0.1 m s−1. As predicted
by Bell’s and Evans’ models as well as the simple critical force
expression, we observe a linear force dependence on Eb and a
relative linear force dependence on 1/xb.

proteins [48]. However, this analysis does not explain why
we observe an asymptotic strength for long lengths and why
the transition occurs between 200 and 550 Å. An explanation
could be that the deformation of longer systems is smoother
than that of shorter systems because they have much more
interactions, and thus the peak of failure is smoothed out more.
As a consequence, the more bonds the system has, the closer to
the average (the asymptote) the force peak is. This hypothesis
seems to be supported by the observation that the more bonds
the system has (or, equivalently, a larger initial length), the
less significant the fluctuations are during the unfolding regime
(that is, the flatter is the force–strain curve during unfolding).

3.7. Multi-timescale analysis of strength

Our coarse-grained model enables us to carry out pulling
simulations over very large ranges of timescales. Figure 10
depicts the rupture force versus pulling velocity of the
mesoscale model of an individual alpha-helix over seven
orders of magnitude of pulling speeds, for a fixed value of
Eb = 7.04 kcal mol−1 and an SMD spring constant of K =
0.1 kcal mol−1 A−2 (parameters are chosen to shift the critical
velocity to larger values in order to enable the investigation of
the breakdown of the Bell model within the range of accessible
pulling speeds). We utilize two definitions of the rupture force
for analysis of the data: first, the force at first peak (FFP)

Figure 9. Size effects, strength and prevalence of length of
alpha-helices. This plot shows the strength properties of
alpha-helices with different lengths, ranging from L = 10 to
4000 Å (from 1 to 400 nm), at 0.1 m s−1 pulling velocity. The results
illustrate two different regimes. For short alpha-helices, the strength
decreases as the length of the alpha-helix increases. The continuous
line shows a logarithmic fit to the data obtained from mesoscale
simulations (see equation (12) for the equation and numerical fitting
parameters). For longer alpha-helices, the strength reaches an
asymptotic regime of about 180 pN. The transition between these
two regimes is between 200 and 550 Å. The plot of the prevalence
over the alpha-helix length (distribution of alpha-helix single-strand
lengths found in biological proteins) illustrates that shorter
alpha-helices are more prevalent [48]. This plot shows a correlation
between the mesoscale results and the prevalence that is the most
prevalent alpha-helices correspond to the strongest ones.

and, second, the mean unfolding force (MUF), and compare
the results with the Bell model predictions.

We observe two regimes for the force analysis based on
FFP and three regimes for the force analysis based on MUF.
The Bell model prediction line is consistent with both the FFP
results and the MUF for pulling velocities above the critical
velocity (that is, pulling velocities below which the Bell model
rupture force is negative). This applies to velocities below
0.01 m s−1 for the parameters selected here. However, for
very high pulling velocities (above 100 m s−1), the Bell model
does not fit well any longer since the MUF curve increases
exponentially. For pulling velocities below the critical velocity,
both MUF and FFP curves converge to an asymptotic positive
strength value between 12 and 30 pN (the estimate based on
MUF is ≈30 pN and the estimate based on FFP is ≈12 pN).
This result agrees qualitatively with the theoretical multi-
timescale model for alpha-helix protein domains developed
in [41] and suggests that indeed there exists an asymptotic
positive strength value and that the Bell model breaks down at
small pulling velocities. Due to the choice of a relatively small
energy barrier, the strength values found in this regime are
smaller than those typically observed in experimental studies
(i.e. the energy landscape parameters used here are not an
accurate representation of the properties of alpha-helices).

3.8. Influence of transducer stiffness

Finally, we study the rupture force of alpha-helices as a
function of the SMD spring constant, representing a variation
of the transducer stiffness in a corresponding AFM experiment.
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Figure 10. Rupture force versus pulling velocity of an individual
alpha-helix over seven orders of magnitude. We plot the two rupture
force definitions (force at first peak and mean unfolding force) and
compare the curves with the Bell model predictions. Panel (a) is a
zoom of panel (b) in the regime of small pulling velocities. We
observe two regimes for the force at first peak (FFP) and three
regimes for the mean unfolding force (MUF). The Bell model
prediction line is consistent with the FFP results and the MUF for
pulling velocities above the critical velocity (that is, the pulling
velocity above which the Bell model rupture force is positive), that
is, for velocities above 0.01 m s−1. For very high pulling velocities
(above 100 m s−1), the Bell model does not fit any more and the
MUF curve increases exponentially. For pulling velocities below the
critical velocity, both MUF and FFP curves converge to a respective
asymptotic positive strength (the estimate based on MUF is ≈30 pN
and the estimate based on FFP is ≈12 pN). Our results agree
qualitatively with the theoretical multi-timescale model for
alpha-helices reported in [41].

Figure 11 depicts the rupture force versus transducer stiffness
of the mesoscale model of an alpha-helix over six orders of
magnitudes, at a pulling velocity of 0.1 m s−1. We plot the two
rupture force definitions (force at first peak, FFP, and mean
unfolding force, MFU) as defined earlier. According to the
FFP fit, the rupture force increases logarithmically with the
transducer spring constant whereas the MFU curve shows a
very low spring constant dependence of the rupture force. The
circled area underlines the range of transducer spring constants
accessible in typical AFM experiments.

4. Conclusions

We have carried out a systematic analysis of the effects of
energy landscape parameters on the strength properties of
alpha-helix protein domains and compared the results with

Figure 11. Rupture force versus transducer stiffness of the mesoscale
model of an individual alpha-helix over six orders of magnitude,
pulling at a velocity of 0.1 m s−1. We plot the two rupture force
definitions (force at first peak, FFP, and mean unfolding force,
MFU). According to the FFP fit, the rupture force increases
logarithmically with the transducer spring constant whereas the MFU
curve shows a very low spring constant dependence of the rupture
force. The circled area indicates the range of transducer spring
constants typically used in experiments.

commonly used simple protein strength models. The most
important contributions of this paper are:

• We have developed and calibrated, by fitting against full
atomistic MD results, a mesoscale model of alpha-helical
protein domains, representing one convolution as a pair
of mesoscale bead particles (see the structure shown in
figure 1). This represents a reference system, which agrees
well with the predictions from Bell’s or Evans’ models
(figure 2).

• This reference system provided us with the starting point
for a systematic variation of all relevant parameters, to
identify how strength properties depend on the details
of the energy landscape and under which conditions the
Bell model fails. By systematically varying the energy
landscape parameters, we have shown that the Bell model
is a reasonable approximation to predict the mechanical
strength properties as long as the model parameters are in
a certain range: Eb between 9 and 18 kcal mol−1 (weak
bond energy barrier) and an xr value above the xb value
(see, e.g., figure 4). Conversely, we find that the Bell
model breaks down when the model parameters are not
in this range. We have also analyzed the dependence of
the unfolding force on Eb and xb (figure 8) and confirmed
the predictions from the Bell model.

• We have shown that the properties of the second, unfolded
state of a alpha-helical turn do not strongly influence the
strength properties, provided that xr, the distance between
the unfolded state and the transition state, is higher than
xb, the distance between the folded state and the transition
state (see, e.g., figure 5). We have also shown that the
energetic properties of the second unfolded state do not
influence the rupture strength.

• We have applied our mesoscale model to predict the
strength of individual alpha-helices with different lengths,
showing two different regimes, to elucidate fundamental
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scaling laws of the strength of alpha-helices. For short
alpha-helices, we have shown a weakening effect as the
molecule becomes longer. This could be explained by the
larger number of serial coupled bonds, where failure of
one bond is sufficient to initiate failure of the entire system
(figure 9). For long alpha-helices, we have shown the
existence of a transition from the strength decrease regime
to a strength asymptotic regime. An explanation could be
that the deformation of longer systems is smoother than
shorter systems because they have much more interactions
and thus the peak of failure is averaged. This might be
one of the reasons why short single alpha-helices are more
prevalent in nature than longer ones, as they provide an
increased strength against failure.

• We have shown that, under extremely small pulling
velocities, the rupture strength of alpha-helical proteins
approach an asymptotic value (figure 10), where the
strength does not depend on the pulling speed any more.
This observation could be an important issue in reaching
a direct link between experiment and simulation, since the
results suggest that there will be no or only a marginal
dependence of the unfolding force on the pulling speed
below a critical pulling speed. Therefore, even though the
molecular simulations are still carried out at larger pulling
speeds than experiments, the predictions derived from
them (such as those shown in figure 2(a)) could perhaps
be utilized for a meaningful comparison of simulation and
experiment (as discussed in section 3.1).

• We have also reported an analysis of the effect of varying
transducer stiffnesses on the strength properties. Our
results suggest that stiffer transducers generally lead to
increased strength properties (figure 11).

Potential applications of the coarse-grained alpha-helix protein
domain model presented here could be further studies of length
scale effects on alpha-helix strength, elasticity and effects
of hierarchical arrangements of alpha-helical-based protein
domains. Further studies could focus on larger variations of
timescales (e.g. to extend to cover very slow, experimental
pulling speeds) and the development of similar formulations
for coiled-coil proteins, larger-scale protein folds with tertiary
structures or larger-level protein materials in general.

The results reported here confirm previous predictions
that the Bell model is relevant for low pulling speeds,
at deformation speeds just above the critical pulling
speed [12–18]. It is also noted that our findings directly
confirm suggestions that, at very low pulling speeds, rebinding
processes are observed, a prediction already made in [14].
Future studies could be focused on an extensive comparison
of the simulation results based on our model with various
advanced single-molecule strength models reported in recent
years [12–18]. The systematic molecular dynamics based
approach as utilized here could provide a useful tool to pursue
such studies.

Our analysis also provides a thorough study of the
influence of key energy landscape parameters on the strength
properties. Energy landscape parameters (such as the
energy barrier Eb), in turn, are directly influenced by the
solvent and other environmental conditions. As such, our

study is important in understanding how different solvents
could change the mechanical properties of alpha-helices, a
problem of great relevance for biological applications and
mechanomutability. Related to the previous point, changes
in Eb could also be achieved by engineering the amino acid
sequence of proteins. An application with great relevance
could be de novo protein materials that are designed and
created based on genetic engineering approaches. In such
applications, our work could be useful to better understand
which sequence would provide the greatest mechanical
stability and what force levels such a system could withstand,
or which sequences could be used to create hierarchical
patterns of alpha-helical domains (e.g. with alternating strong–
weak domains to create nanocomposite structures).

The coarse-graining approach used here works well for
one-dimensional filamentous protein structures and could be
extended easily to model parallel arrays of alpha-helices or
larger-scale protein filament assemblies. However, for more
complex protein structures other coarse-graining techniques
such as elastic network models or shape-based coarse-graining
could be more appropriate techniques [49–52] together with
the techniques discussed in section 2.2.1 [24–28]. Moreover,
individual, isolated alpha-helices are rarely found in biology.
Therefore, further studies could be focused on applying the
double-well potential to other structural proteins and filaments,
or assemblies of alpha-helices into larger-scale assemblies.
The conclusions put forth here should be generically valid
for a broader class of structural proteins. This is because the
energy landscape structure as presented in figures 1(b) and (c)
is not unique to alpha-helices. Rather, other protein filaments
featuring serially arranged domains that unfold under strain can
be described based on the modeling framework proposed here,
with appropriate parameterization of the model parameters (as
listed in table 1). In light of this, the choice of alpha-helices
in the studies reported can be considered as a model system
that helped us to elucidate the generic behavior of a general
class of protein filaments using a computationally efficient
mesoscopic description. Specifically, the insight into the
length dependence of strength properties (figure 9), the effects
of pulling speed and the asymptotic behavior at vanishing
rates (figure 10) and transducer stiffness (figure 11) might be
useful for the interpretation of experimental results and the
comparison with theoretical and numerical models for a variety
of other protein filaments.
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